WELCOME TO THE 3RD FRAUNHOFER GREEN DEAL WEBINAR

09 March 2021 | 9:00 – 10:00 a.m.

AGENDA

<u>Slide 3</u>	Welcome and introduction by Prof. Andreas Bett			
	Director Fraunhofer Institute for Solar Energy Systems ISE			

- <u>Slide 15</u> Expert presentation I "PV production: New opportunities for Europe" Dr. Ralf Preu, Division Director Fraunhofer Institute for Solar Energy Systems ISE
- Slide 30 Expert presentation II "Integrated Photovoltaics: Activating Surfaces for Green Electricity Generation" Dr. Harry Wirth, Division Director Fraunhofer Institute for Solar Energy Systems ISE

Welcome and introduction

by Prof. Andreas Bett

Director of Fraunhofer-Institute for Solar Energy Systems ISE

Fraunhofer Institute for Solar Energy Systems ISE Research for the Energy Transformation

Directors

Prof. Dr. Hans-Martin Henning Prof. Dr. Andreas Bett

Staff

ca. 1250

Budget 2020 (preliminary)

Operation	€91.2 million
Investment	€13.6 million
Total	€104.8 million

Fraunhofer ISE Areas of Concentration

					CVCTENC
ΕN	IEKG	Y LECHI	NOLOG	IES AND	SYSIEMS

PHOTOVOLTAICS

Energy Efficient Buildings

Solar Thermal Power Plants and Industrial Processes

Hydrogen Technologies and Electrical Energy Storage

Power Electronics, Grids and Smart Systems

Photovoltaic Modules and Power Plants

Silicon Photovoltaics

III-V and Concentrator

Perovskite and Organic

Photovoltaics

Photovoltaics

Photovoltaics: THE Pilar for the Carbon-free Energy Supply! Growing Markets Need Sustainable Industrial Production

In 2018 Fraunhofer ISE starts the initiative:

10GWGreenFAB

Manufaturing of PV in Europe to maintain the technological sovereignty and independency.

see: https://www.ise.fraunhofer.de/en/renewable-energy-data.html

Motivation for Circle Economy

7 © Fraunhofer ISE FHG-SK: ISE-PUBLIC

Motivation for Circle Economy

Motivation for Circle Economy Recycling is Needed

9 © Fraunhofer ISE FHG-SK: ISE-PUBLIC

Motivation for Circle Economy Recycling is Needed

Module: 300 Wp, 1.67*1.0*0.033 m³, 18 kg

→ only ~200 GW, today 750 GW future: 70.000 GW!

10 © Fraunhofer ISE FHG-SK: ISE-PUBLIC

Photovoltaics: THE Pilar for our Carbon-free Energy Supply **Growing Markets Need Sustainable Industrial Production**

- 10 GW_p fully integrated production in Europe is competitive
 - Cost advantages >10 % due to reduced logistic costs
 - Production with less CO₂ emission
- Alignment within Europe
 - ESMC (European Solar Manufacturing Council)
 - Solar Europe Now
 - Solar Power Europe + EIT Solar Energy \rightarrow European Solar Initiative
 - ETIP-PV

see: https://www.ise.fraunhofer.de/en/renewable-energy-data.html

Photovoltaics: THE Pilar for our Carbon-free Energy Supply Growing Markets Need Sustainable Industrial Production

- 10 GW_p fully integrated production in Europe is competitive
 - Cost advantages >10 % due to reduced logistic costs
 - Production with less CO₂ emission
- Alignment within Europe
 - ESMC (European Solar Manufacturing Council)
 - Solar Europe Now
 - Solar Power Europe + EIT Solar Energy
 → European Solar Initiative
 - ETIP-PV

see: https://www.ise.fraunhofer.de/en/renewable-energy-data.html

Contact

Fraunhofer Institute for Solar Energy Systems ISE

Prof. Dr. Andreas Bett

www.ise.fraunhofer.de

andreas.bett@ise.fraunhofer.de

13 © Fraunhofer ISE FHG-SK: ISE-PUBLIC

Setting the scene

by Michael Bloss

Patron of the webinar Member of the European Parliament

Expert presentation I "PV production: New opportunities for Europe"

By Dr. Ralf Preu

Director Photovoltaics - Production Technology Fraunhofer Institute for Solar Energy Systems ISE

Agenda

- PV-market: History and Outlook
- Competitiveness of European PV Production
 - Costs
 - Sustainability
 - Innovative PV-Technology
 - New Production in Europe
- Summary

Combined PV and Wind System Tenerife, Spain

PV-market: History and Outlook

Historical development of global PV installation

- Photovoltaics has experienced steady growth worldwide
- IEA: cumulative installed PV capacity by 2019: 629 GW_p

Global Evolution of Cumulative PV Installations

Source: Report IEA-PVPS T1-37:2020

PV-market: History and Outlook

Future development of energy sources– Shell Sky Scenario

- PV steady growth
 - IEA: cumulative installed PV capacity by 2019: 629 GW_p
 - Shell: PV the most important energy source by mid-century

PV-market: History and Outlook LUT/Energy Watch Group Scenario – Gigafab demand

- PV steady growth
 - IEA: cumulative installed PV capacity by 2019: 629 GW_p
 - Shell: PV the most important energy source by mid-century
 - LUT/Energy Watch Group: cost-efficient 1,5 K scenario
 - 8,800 GW installed in 2035 (ca. 40,000 km², size of NL)
 - 15 Gigafactories needed (60 GW PV each)

Number of 60 GW-PV-factories needed for 1.5 K target, cost-efficiently.

Source: Lappeenranta University of Technology/Energy Watch Group in https://www.dw.com/de/globale-energiewende-braucht-100-solarmodul-fabriken-sofort/a-56145363

PV-market: History and Outlook

Price experience curve: all commercially available PV technologies

Learning rate:

- the price has fallen by 25% Each doubling of cumulative production
- 85% price decrease since 2011
- 2020: approx. 22 €ct/Wp

Global Evolution of Module Price vs Cumulative Production

Graph: PSE/Fraunhofer ISE 2020

PV-market: History and Outlook

Price experience curve: all commercially available PV technologies

Learning rate:

- the price has fallen by 25% Each doubling of cumulative production
- 85% price decrease since 2011
- 2020: approx. 22 €ct/Wp
- Current average Power Purchase Agreement price in Spain¹:
 - 2.45 €ct/kWh

PV-market: History and Outlook Installed PV capacity in Europe 2000-2020

- Strong national market fluctuations
- **European PV industry**
 - until 2011: strong growth
 - 2012-2017:
 - collapse of EU-PV producer
 - enormous build up of PV in China with EU equipment and technology
 - since 2018: a few innovative EU benchmark equipment maker

European PV-market 2000-2020.

Source: Solar Power Europe

23 © Fraunhofer ISE **FHG-SK: ISE-PUBLIC** * including Great Britain, Norway and Switzerland ** currently 2,800 t poly-Si are needed for 1 GWp ingot *** currently 3,150 t mg-Si needed for 1 GWp ingot

Competitiveness of European PV Production Scenario analysis: cost

- VDMA/ISE Study 2019: Scenario Analysis for PERC Module Manufacturing Costs
- Bottom-up calculation with industry data
- Competitive PV production in Germany – Requirements
 - Strong EU market
 - Production scale (multi-GW)
 - EU-value chain
 - Fair carbon emission trading / compensation system

PERC: Passivated Emitter and Rear Cell, PV technology predominant today

Competitiveness of European PV Production Scenario analysis: sustainability

- VDMA/ISE Study 2019: Scenario Analysis for PERC Module Manufacturing Costs
- Bottom-up calculation with industry data
- Competitive PV production in Germany – Requirements
 - Strong EU market
 - Production scale (multi-GW)
 - EU-value chain
 - Fair carbon emission trading / compensation system

PERC: Passivated Emitter and Rear Cell, PV technology predominant today

*Source: Friedrich et al. (2020) - GWP and EPBT Analysis of PV Electricity by PERC Solar Modules, Journal of Photovoltaics, submitted.

Competitiveness of European PV Production

Innovation: Record Cell efficiencies and production technology from Europe

- Passivated Emitter and Rear Cell covers more than 80% of world market in 2021
- Recent Laboratory Records
 Si-TOPCon: 26.0 % (Europe)
 BJ-HJT: 26.7% (Japan)
 Pero/Si-Tandem: 29.5% (Europe)
 III-V/Si-Tandem: 34.5% (Europe)
- Production technology
 - fast
 - reduction of scarce materials
 - digital

Competitiveness of European PV Production New Initiatives

					•	Module
HJ.	т		capacity / GW			Factory size
	MeverBurger	Cell+Module	0.4/1.4 GW			> 1 GWp
	EnCore (Hevel)	Ingot&Wafer+Cell	1 GW		A P S	> 100 MWp
	REC	Cell+Module	2 GW	>		> 50 MWp
PE	RC/TOPCon			4 *		
	GreenLand Gigafab	Ingot – Module	1 GW	Par Z	Valoe	
	VallisSolaris	Ingot – Module	1 GW	E A Com	EnCore	
	Energetica	Cell+Module	1 GW	Energyr	Oxford PV a MeverBurger	Summe
Та	ndem			dis mont	NexWafe GigaPV	E.
	Oxford PV	Cell	250 MW	RE	C Surgeringer	Engline
	Giga PV	Cell	1 GW		Energetica	
IBO	C			En and a	VallisSolaris	row
	Valoe/Solitek	Cell+Module	60 MW	A Standard		
	Energyra	Module	100 MW	GreenLand Gigafab		and of
				1 man	Mary S.	

© karto×jm (fotolia) / europakarte.org

Value chain step

mg-Si / Poly-Si Ingot / Wafer

Cell

Summary

PV production: New opportunities for Europe

We must

- install up to 8,800 GW of PV modules in EU
- realize short transport and reliable supply chain
- use the sustainable European energy mix

We can

- use world leading next gen technology from European R&D
- build big and sustainable PV Fabs

Thank you for your Attention!

Fraunhofer Institute for Solar Energy Systems ISE

Dr. Ralf Preu

www.ise.fraunhofer.de

ralf.preu@ise.fraunhofer.de

29 © Fraunhofer ISE FHG-SK: ISE-PUBLIC

Expert presentation II "Integrated Photovoltaics: Activating Surfaces for Green Electricity Generation"

By Dr. Harry Wirth

Division Director Fraunhofer Institute for Solar Energy Systems ISE

PV Demand for Energy Transition Volumes

PV capacity demand in Europe on sharp rise

PV Demand for Energy Transition Land use

- PV capacity demand in Europe on sharp rise
- PV requires large areas, typical
 - power 0,7 MW/ha
 - annual yield 700 MWh/ha (location dependent)
- Efficiency roadmaps expect 50% rise until 2050

Land use for PV electricity generation becomes challenging

What is "Integrated Photovoltaics"?

Technical Potentials for Integrated PV (German Case Study) Rough Estimations

Enabling Technologies for Integrated PV

MorphoColor[®] coating

Bifacial yield

High Efficiency

Lightweight Design

Curved Design

Industry 4.0

Integrated PV Agrivoltaics

Additional benefits

Strengthen resilience against climate change

APV: Organic Farming (ISE/Baywa, Heggelbach, D)

Integrated PV Agrivoltaics

Additional benefits

- Strengthen resilience against climate change
- Protect sensitive crops
- Water management
- Double use of mounting structure
- Local customized mass production

APV: Orchard Visualisation)

Integrated PV Building Integration

Additional benefits

- Weather protection
- Double use of cover material
- Double use of mounting structure

BIPV: Laboratory façade (ISE)

Integrated PV Building Integration

Additional benefits

- Weather protection
- Double use of cover material
- Double use of mounting structure
- Local customized mass production

BIPV: invisible PV circuitry, glare-free coating (ISE)

Integrated PV Floating PV

Additional benefits

- Increase electric yield
- Strengthen resilience of lake against climate change
- Reduce evaporation loss

FPV Visualization

Integrated PV Vehicle Integration

Additional benefits

- **Reduce charging frequency**
- Reduce carbon footprint

RIPV: Curved car roof with shingled solar cells and MorphoColor® coating (ISE)

41 © Fraunhofer ISE FHG-SK: ISE-PUBLIC

Integrated PV Vehicle Integration

Additional benefits

- **Reduce charging frequency**
- Reduce carbon footprint
- Double use of cover material
- Double use of mounting structure
- Local customized mass production

VIPV: Utility car with lightweight modules (ISE)

Integrated PV Road Integration

Additional benefits

- Noise protection
- Double use of cover material
- Double use of mounting structure
- Weather protection
- Local customized mass production

Fraunhofer

RIPV: RIPV: Noise barrier, road roofing, bicycle roadway with PV

Thank you very much for your attention!

Integrated PV: Zero land consumption, multiple benefits, improved acceptance

Fraunhofer-Institut für Solare Energiesysteme ISE

Dr. Harry Wirth

www.ise.fraunhofer.de

harry.wirth@ise.fraunhofer.de

Fraunhofer

THANK YOU FOR ATTENDING THIS FRAUNHOFER GREEN DEAL WEBINAR

Verena Fennemann Fraunhofer-EU-Office Brussels Rue Royale 94, 1000 Brussels <u>verena.fennemann@zv.fraunhofer.de</u>, +32 (0) 2 – 50642 45

Fraunhofer Green Deal Series

"The Photovoltaics Renaissance – New opportunities for a key enabler of the clean energy transition"

